Human Consciousness in the Brain

Share this page on your social media


by Jason von Stietz - March 27, 2015

Photo Credit: The Independant 

 

Where does human consciousness exist in the brain? Is there a specific location or is consciousness the result of the sum of the entire brain’s activity? Researchers at Vanderbilt examined participants’ brain activity when presented with visual stimuli. Applying Graph Theory, the researchers concluded that consciousness is the result of global activity in the brain rather than focal activity. The study was discussed in a recent article in MedicalXpress: 

 

"Identifying the fingerprints of consciousness in humans would be a significant advancement for basic and medical research, let alone its philosophical implications on the underpinnings of the human experience," said René Marois, professor and chair of psychology at Vanderbilt University and senior author of the study. "Many of the cognitive deficits observed in various neurological diseases may ultimately stem from changes in how information is communicated throughout the brain."

 

Using graph theory, a branch of mathematics concerned with explaining the interactive links between members of a complex network, such as social networks or flight routes, the researchers aimed to characterize how connections between the various parts of the brain were related to awareness.

 

"With graph theory, one can ask questions about how efficiently the transportation networks in the United States and Europe are connected via transportation hubs like LaGuardia Airport in New York," Douglass Godwin, graduate student and lead author on the research, said. "We can ask those same questions about brain networks and hubs of neural communication."

 

Modern theories of the neural basis of consciousness fall generally into two camps: focal and global. Focal theories contend there are specific areas of the brain that are critical for generating consciousness, while global theories argue consciousness arises from large-scale brain changes in activity. This study applied graph theory analysis to adjudicate between these theories.

 

The researchers recruited 24 members of the university community to participate in a functional magnetic resonance imaging (fMRI) experiment. While in the fMRI scanner, participants were asked to detect a disk that was briefly flashed on a screen. In each trial, participants responded whether they were able to detect the target disk and how much confidence they had in their answer. Experimenters then compared the results of the high-confidence trials during which the target was detected to the trials when it was missed by participants. These were treated as "aware" and "unaware" trials, respectively.

 

Comparison of aware and unaware trials using conventional fMRI analyses that assess the amplitude of brain activity showed a pattern of results typical of similar studies, with only a few areas of the brain showing more activity during detection of the target than when participants missed seeing it. The present study, however, was interested not simply in what regions might be more activated with awareness, but how they communicate with one another.

 

Unlike the focal results seen using more conventional analysis methods, the results via this network approach pointed toward a different conclusion. No one area or network of areas of the brain stood out as particularly more connected during awareness of the target; the whole brain appeared to become functionally more connected following reports of awareness.

 

"We know there are numerous brain networks that control distinct cognitive functions such as attention, language and control, with each node of a network densely interconnected with other nodes of the same network, but not with other networks," Marois said. "Consciousness appears to break down the modularity of these networks, as we observed a broad increase in functional connectivity between these networks with awareness."

 

The research suggests that consciousness is likely a product of this widespread communication, and that we can only report things that we have seen once they are being represented in the brain in this manner. Thus, no one part of the brain is truly the "seat of the soul," as René Descartes once wrote in a hypothesis about the pineal gland, but rather, consciousness appears to be an emergent property of how information that needs to be acted upon gets propagated throughout the brain.

 

"We take for granted how unified our experience of the world is. We don't experience separate visual and auditory worlds, it's all integrated into a single conscious experience," Godwin said. "This widespread cross-network communication makes sense as a mechanism by which consciousness gets integrated into that singular world."

 

Read the full article Here


 

Comments

Post a Comment
  1. Leave this field empty

Required Field